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The Ratio and Root Tests

Goals for today:
e Use the Ratio and Root tests to determine whether series converge absolutely or diverge.

e Practice deciding which test to use for a given series.

Recall: Absolute versus conditional convergence:

2 ak
e Converges absolutely if > |ag| converges (and therefore > aj converges, too!)
e Converges conditionally if > aj converges, but > |ax| diverges.

Ex.

Since | sin(k)| < 1 for all k, we have:

We know Y 77, 7= converges, so:
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Geometric series:
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diverges if |r| > 1

For a convergent geometric series (Z a =Y, ark’):
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As k — oo, this approaches |r| < 1.

Statement: The ratio between consecutive terms is |r| < 1 always, and the Kth root of the Kth
term approaches |r| < 1 in the limit. This idea works more broadly!

The Ratio Test

Let Y ay be an infinite series and let
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r= lim
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1. If » < 1, the series converges absolutely.

2. If r > 1 or +deesnot-exist{PNE}, the series diverges.

3. If r = 1, the test is inconclusive (anything can happen)

Note: Professor crossed out ’does not exist’ in (2) due to a student’s counterezample.

The Root Test

Let Y ax be an infinite series and let

p= lim (ak)l/k
k—o0

Same conclusions as the Ratio Test:
o If p < 1, the series converges absolutely.
o If p > 1, the series diverges.

e If r =1, the test is inconclusive (anything can happen)

Usually, one of these tests is easier than the other.



Ratio test example

Determine whether Y ;- LW converges absolutely.
(—D)M(R? +4) (=D*2((k +1)* +4)
U= "] T k= k1
)RRk 1)2 + 4 k
r = lim Gt lim (=1) ((kJr )"+ ) ¢
k—oo | Qg k—o0 ekt1 (—1)k+1(k}2 + 4)
_ 2
~ lim (=1)(k* +2k+5)
k—o00 6(/€2 + 4)

1. k2+2k+5 1

=-lim ——— = -

€ k—oo k2 —+ 4 e

Since % < 1, the series converges absolutely.
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(crossing out like terms):
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Back to the Root Test:
Let p = limy 00 |ak|1/k.
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e The series converges absolutely if p < 1.

e The series diverges if p > 1.
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Using the Root Test, let ay = (3_4k2) .
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Using the Root Test:
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